220120 - Automobile Electronics

Degree competences to which the subject contributes

Specific:
1. An understanding of, and skills for, the modelling and simulation of systems
2. An understanding of the basics of electronics
3. Applied knowledge of power electronics.

Teaching methodology

Theory classes: In this lectures, teachers will introduce basic concepts of system operation and description of components. Special attention will be paid to system modeling and simulation (MATLAB/Simulink). All these explanations are system oriented and they will be illustrated with real examples to facilitate their understanding.

Self-study: Students need to work on the tasks assigned by teachers in order to develop solutions according to the problem requirements. These tasks will be focused in the modeling and simulation of a given system. Students will be asked to prepare written reports of the assigned tasks related to Modules 2 and 3.

Teachers provide the curriculum and monitoring of activities through ATENEA.

Learning objectives of the subject

This course gives an introductory overview of electronic systems in a modern car. It covers a description components, system architecture and operation. The course also considers the modeling and simulation of these systems. At the end of the course, students should be able:
- to know the basics principles, components and operation of electronics systems in a car
- to model and simulate the performance of these systems
Study load

<table>
<thead>
<tr>
<th>Total learning time: 75h</th>
<th>Theory classes:</th>
<th>30h</th>
<th>40.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Self study:</td>
<td>45h</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
Content

<table>
<thead>
<tr>
<th>Module 1: Introduction to Car electronics</th>
<th>Learning time: 12h 30m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Large group/Theory: 5h</td>
</tr>
<tr>
<td></td>
<td>Self study : 7h 30m</td>
</tr>
</tbody>
</table>

Description:
Role of electronics in a modern car. Description of systems architecture. Modeling tools.

Related activities:
- Final exam.

<table>
<thead>
<tr>
<th>Module 2: Systems of driving assistance</th>
<th>Learning time: 25h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Large group/Theory: 10h</td>
</tr>
<tr>
<td></td>
<td>Self study : 15h</td>
</tr>
</tbody>
</table>

Description:
This module deals with systems of driving assistance such as Anti Block System (ABS) or Anti Slip System (ASS), covering basic systems description, operation and simulation.

Related activities:
- Homework related to Module 2
- Final exam.

<table>
<thead>
<tr>
<th>Module 3: Systems of engine management</th>
<th>Learning time: 25h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Large group/Theory: 10h</td>
</tr>
<tr>
<td></td>
<td>Self study : 15h</td>
</tr>
</tbody>
</table>

Description:
This module deals with systems of engine management and monitoring, such as Electronic Fuel Injection, covering basic systems description, operation and simulation.

Related activities:
- Homework related to Module 3
- Final exam.
Module 4: Communications between systems. Introduction to CAN bus

Description:
This module introduces the CAN bus. Main features and characteristics of CAN bus. Examples of application.

Related activities:
Final exam.

Learning time: 12h 30m
- Large group/Theory: 5h
- Self study: 7h 30m

Qualification system

The final grade depends on the following assessment criteria:

- Homework related to Module 2, weight: 30 %
- Homework related to Module 3, weight: 30 %
- Final exam, weight: 40 %

Bibliography

Others resources: